
Lua scripting

Version 1.13

Page 1

We are programmed just to do
Anything you want us to

- Kraftwerk, “The Robots”

Copyright © 2026 Expert Sleepers Ltd. All rights reserved.

This manual, as well as the hardware and software described in it, is furnished under licence and
may be used or copied only in accordance with the terms of such licence. The content of this
manual is furnished for informational use only, is subject to change without notice, and should not
be construed as a commitment by Expert Sleepers Ltd. Expert Sleepers Ltd assumes no
responsibility or liability for any errors or inaccuracies that may appear in this document.

Expert Sleepers® is a registered trade mark in the UK, the European Union, and the United States.

Page 2

Table of Contents
Introduction..6

Lua version..6

Libraries...6

The Lua Script algorithm..7

Introduction..7

Anatomy of a script..7

Name and description..8

The script is a chunk...8

The ‘self’ table..8

The ‘init’ function...8

The ‘step’ function..9

Stepped and linear outputs..9

Triggers and gates...9

Input and output naming...10

The ‘draw’ function...11

Parameters...11

self.algorithmIndex...12

self.parameterOffset..12

Custom UI...13

Serialisation...14

MIDI..14

UI scripts..16

Introduction..16

Anatomy of a UI script..16

Functions that a script can define..17

init...17

pot1Turn/pot2Turn/pot3Turn..17

encoder1Turn/encoder2Turn...17

Page 3

Button push/release functions...18

draw...18

The Lua console tool..19

Interactive shell..19

Keyboard shortcuts...20

Installing programs..20

Drawing in Lua scripts...21

Language extensions..22

Algorithm functions...22

Parameter functions...22

UI functions...22

Drawing functions..22

Global functions...22

Function documentation (alphabetical)...23

drawAlgorithmUI..23

drawBox..23

drawCircle...23

drawLine...23

drawParameterLine...23

drawRectangle...24

drawSmoothCircle..24

drawSmoothLine...24

drawStandardParameterLine...24

drawText..24

drawTinyText..25

exit...25

findAlgorithm..25

findParameter..25

focusParameter..26

getAlgorithmCount...26

Page 4

getAlgorithmName..26

getBusVoltage...26

getCpuCycleCount..26

getCurrentAlgorithm...27

getCurrentParameter...27

getFirmwareVersion..27

getParameter..27

getParameterCount..27

getParameterName..27

sendI2CCommand...28

sendI2CGetter...28

sendMIDI..28

setDisplayMode..28

setParameter..29

setParameterNormalized...29

standardPot1Turn/standardPot2Turn/standardPot3Turn...29

Acknowledgments..30

Lua...30

Page 5

Introduction
The scripting language Lua1 is embedded into the disting NT. It can currently be accessed in the
following ways:

• Via the Lua Script algorithm.

• Via the UI scripts.

• Via the Lua console tool.

These are explored in more detail below.

In all cases, the scripts or user input are interacting with a single ‘instance’ of Lua on the machine.
So, for example, global variables are accessible across all scripts. Similarly, however you use Lua
on the disting NT you have access to the same additional functions that the module defines.

Lua version
The version of Lua implemented in the disting NT is currently 5.4.6.

Libraries
The use of the require keyword to load libraries is supported. The search path is

/programs/lua/?;/programs/lua/?.lua;/programs/lua/lib/?;/programs/lua/lib/?.lua

The recommend location for libraries is /programs/lua/lib/

For example

require 'complex'
local c = complex.add(complex.i, complex.new(10, 20))

1 https://www.lua.org

Page 6

https://www.lua.org/

The Lua Script algorithm

Introduction
The Lua Script algorithm allows you to run what are effectively scripted “plug-ins”, loaded from
the MicroSD card. These scripts run alongside the module’s built-in algorithms, and are part of the
core audio/CV bus processing system.

Please refer to the disting NT user manual for information on installing scripts and loading the
algorithm.

Anatomy of a script
A simple script might look like this:

-- LFO
-- Simple LFO example.

local t = 0.0

return
{

name = 'LFO'
, author = 'Expert Sleepers Ltd'

, init = function(self)
return
{

inputs = 1
, outputs = 2
}

end

, step = function(self, dt, inputs)
local f = 1 + inputs[1]
t = t + dt * f
if t >= 1.0 then

t = t - 1.0
elseif t < 0.0 then

t = t + 1.0
end
local sqr = t > 0.5 and 5.0 or -5.0
local tri = 20 * math.min(t, 1 - t) - 5
return { sqr, tri }

end

}

The return value from the script is a table, most of the elements of which are functions. The system
will call these functions at various times to initialise and execute the algorithm.

Page 7

Name and description
The first two lines of the example above are comments, which are picked up by the module and
used to present information to the user before the script is actually loaded.

The first comment is the script name, which should be fairly short.

The second comment is the description, which can be quite long. You can optionally use the Lua
multi-line comment syntax --[[]]. For example:

-- Quad Bernoulli Gate
--[[
Four incoming gates are probabilistically passed to the outputs. Release
can be immediate (when gate goes low) or sticky, when probability allows.
]]

The script is a chunk
The script is loaded and executed by the Lua system on the module. As such, it is a chunk2, and can
have local variables, local functions etc.

In the example above, the variable t is local to the script.

The ‘self’ table
The functions that implement the script all have self as their first parameter. This holds the table
that was returned when the script was initially executed. So for example in the script above,
self.author will have the value 'Expert Sleepers Ltd'.

An alternative to using script-local variables is to add elements to this table. For example, rather
than using the local t, the above script might choose to use self.t.

The ‘init’ function
The init function is called once when the script is first loaded. Its main purpose is to return a table
describing its inputs, outputs, and parameters. From the example:

return
{

inputs = 1
, outputs = 2
}

inputs and outputs can be anywhere from 0 to 28 – the number of busses on the system. If either
is omitted, it is taken as 0.

The algorithm exposes parameters automatically to allow routing of the script’s inputs and outputs
to the system busses:

2 https://www.lua.org/manual/5.3/manual.html#3.3.2

Page 8

https://www.lua.org/manual/5.3/manual.html#3.3.2

The ‘step’ function
The step function is called regularly – in the current firmware, every 1ms. It is the script’s
opportunity to read from the input busses and write to the output busses.

, step = function(self, dt, inputs)
local f = 1 + inputs[1]

...
return { sqr, tri }

end

dt holds the time step (in seconds) since step was last called.

inputs is an array (1-based) containing the bus voltages. It will have the number of elements as
requested in init.

The return value from the function should be a table containing the output voltages. Note that it
does not have to contain every element; only the ones that need to be updated. For example, you
could use

local outs = {}
outs[2] = tri
return outs

which would only update the second output; the first output would retain its previous value.

Stepped and linear outputs
By default, all outputs from scripted plug-ins are stepped, only updating once per step call. You can
choose to have them linearly interpolated, if a smooth CV is more appropriate. You do this in the
init call, for example:

return
{

inputs = 1
, outputs = { kStepped, kLinear }
}

So rather than outputs being an integer, it is now an array, the size of which determines the number
of outputs. Each entry in the array can be one of kStepped or kLinear to determine how that output
should be handled. For our LFO example, kStepped is appropriate for the square output and
kLinear is better for the triangle output.

Triggers and gates
To avoid having to perform these common operations in Lua, inputs can be monitored for triggers
and gates by the system, only calling back to the Lua script when something changes. This is much
more efficient than doing the same thing in step.

Page 9

Consider this example script (SRflipflop.lua in our GitHub):

return
{

name = 'SRflipflop'
, author = 'Expert Sleepers Ltd'

, init = function(self)
return
{

inputs = { kTrigger, kTrigger }
, outputs = 1
}

end

, trigger = function(self, input)
self.state = input > 1
local v = self.state and 5.0 or 0.0
return { v }

end

, draw = function(self)
drawText(100, 40, self.state and "High" or "Low")

end

}

You will see that in the return from init, inputs is now an array rather than an integer. The size of
the array determines the number of inputs, and the values in the array determine their type – one of
kCV, kGate, or kTrigger.

In our example we have two trigger inputs. When the trigger fires, the system calls the trigger
function in the script. The input parameter to this function tells the script which input caused the
trigger.

The return from trigger is a table of output voltages, exactly as from step. Again, this table can
be sparse; it doesn’t have to contain every output voltage that the script defines.

Similarly, adsr.lua uses a gate:

 return {
 inputs = {kGate},
 outputs = {kLinear},
 }

Analogous to the trigger function, gates use a gate function:

 gate = function(self, input, rising)

Again, input is an integer specifying which input gate changed, and rising is a boolean value
specifying whether the gate has just opened (true) or closed (false).

The gate function should return a table of outputs to update, exactly as step and trigger.

Input and output naming
The table returned from init can optionally include custom names for the inputs and outputs,
which will otherwise be “Input 1”, “Input 2”, etc. For example:

Page 10

inputs = { kCV, kTrigger, kGate }
, inputNames = { [2]="Trigger input" }
, outputs = 2
, outputNames = { "X output", "Y output" }

inputNames and outputNames are tables, indexed by the input and output numbers. In the example
above, no custom name is given for inputs 1 & 3, so these will use the default “Input 1” and “Input
3”.

The ‘draw’ function
The previous (SRFlipFlop) example also introduces draw. This function is called regularly (30fps in
the current firmware) and allows the script to define its own custom display.

Any of the drawXXX functions described below can be used within draw.

If the function returns nothing (or anything that Lua considers equivalent to boolean false), the
standard parameter line will be drawn at the top of the screen. For example, the above SRFlipFlop
draw produces this:

If draw returns boolean true, the top line is suppressed.

Parameters
Scripts may also define algorithm parameters, in the return from init. For example, from
‘bouncy.lua’:

return
{

inputs = { kCV, kTrigger, kGate }
, outputs = 2
, parameters =

{
{ "Min X", -10, 10, -10, kVolts }

, { "Max X", -10, 10, 10, kVolts }
, { "Min Y", -100, 100, -100, kVolts, kBy10 }
, { "Max Y", -100, 100, 100, kVolts, kBy10 }
, { "Edges", { "Bounce", "Warp" }, 1 }
}

}

which results in this:

parameters is an array, each element of which is also an array. Three variants of the parameter
array are shown above. The first is

Page 11

, { "Max X", -10, 10, 10, kVolts }

In this case the fields are: name, minimum value, maximum value, default value, unit. The values
are integers (and will be passed back to the script as integers). The ‘unit’ takes one of these values:

kNone
kDb
kDb_minInf
kPercent
kHz
kSemitones
kCents
kMs
kSeconds
kFrames
kMIDINote
kMillivolts
kVolts
kBPM

The second parameter variant takes a scale value:

, { "Max Y", -100, 100, 100, kVolts, kBy10 }

The scale can be one of kBy10, kBy100, or kBy1000. The minimum, maximum, and default values
are divided by the scale, and handled as floats. For example the default above is 10.0V.

The third form a parameter can take is an enum value:

, { "Edges", { "Bounce", "Warp" }, 1 }

The first field is the name, as always. The second field is an array of enum values. The third is the
default value – 1 in this case referring to the first enum value, ‘Bounce’.

Within the script the parameter values can be accessed as self.parameters. For example in the
above script, the ‘Edges’ parameter is self.parameters[5]. Note that this is read only access –
changing parameter values should be done via setParameter (below).

self.algorithmIndex
The system adds a member to the script table called algorithmIndex, which is the index of the
algorithm in the preset. It can be used as the argument to calls to, for example,
getCurrentParameter.

self.parameterOffset
The parameters that a script defines are in addition to the parameters that the system maintains for
the algorithm – the program choice, the routing etc.

All of the global functions that relate to parameters (e.g. setParameter) use an indexing that
includes the system parameters, whereas the self.parameters array includes only the script-
defined parameters.

The system adds a member to the script table called parameterOffset, which relates the two
numbering systems.

Page 12

An example of this is in the ‘bouncy.lua’ script:

, draw = function(self)
local alg = self.algorithmIndex
local p = getCurrentParameter(alg) - self.parameterOffset
drawRectangle(cx, ty, cx, by, 1)
drawRectangle(lx, cy, rx, cy, 1)
local x1 = toScreenX(self.parameters[1])
local x2 = toScreenX(self.parameters[2])
local y1 = toScreenY(self.parameters[4])
local y2 = toScreenY(self.parameters[3])
drawRectangle(x1, y1, x2, y1, p == 4 and 15 or 2)

The local variable p is the current parameter index in the script-relative numbering.

Custom UI
As well as presenting a custom display via draw, it is also possible to override the standard UI (the
standard UI being the three pots to control parameter page, parameter selection, and parameter
value).

To do this, give the script a function called ui which returns true:

, ui = function(self)
return true

end

An example can be seen in the ‘bouncy.lua’ script.

If the system is gets a true value from ui, it does not implement the standard UI, and instead calls
functions which may be (optionally) defined by the script. These functions are:

pot1Turn
pot2Turn
pot3Turn
encoder1Turn
encoder2Turn
pot3Push
pot3Release
encoder2Push
encoder2Release

These are identical to the functions that UI scripts can call, and are documented below.

A script may also define a setupUi function, which will typically be required only if the script
defines a custom behaviour for the pots. This function is called whenever the algorithm’s UI
appears for the first time (for example, when you switch from the overview display to the algorithm
display).

setupUi takes one argument (self) and should return an array of pot positions (in the range 0.0-
1.0). For example:

 pot1Turn = function(self, x)
 self.foo = math.floor(x * 100 + 0.5)
 end,
 setupUi = function(self)
 local table = {}
 table[1] = self.foo/100.0

Page 13

 return table
 end,

This allows the system to sync up the pot positions so that soft value takeover works.

Serialisation
Scripts may store arbitrary data in the module’s preset files (as well as their parameter values, which
are all handled automatically).

To do so, give the script a function called serialise, and return a table of data to be stored. The
preset files are JSON, so the data needs to be JSON-friendly – numbers, strings, and booleans,
arranged in tables or arrays. For example:

, serialise = function(self)
local state = {}
state.testInt = 42
state.testNum = 0.5
state.testBool = true
state.testArray = { 4, 8, 16 }
state.testArray2 = { "ham", "eggs" }
state.testObject = { red=1, green=7 }
state.testComplex = { arr={10,9,8}, obj={a="low",b="high"} }
return state

end

will produce the following in the JSON:

 "state": {
 "testBool": true,
 "testNum": 5.000000e-01,
 "testComplex": {
 "obj": {
 "a": "low",
 "b": "high"}
 ,
 "arr": [10,9,8]
 }
 ,
 "testInt": 42,
 "testArray": [4,8,16]
 ,
 "testArray2": ["ham","eggs"]
 ,
 "testObject": {
 "green": 7,
 "red": 1}
 }

When the preset is loaded, the state table is loaded and stored in the script’s self table, just before
init is called. So, within init the loaded state is available as self.state. You’re free to process
this into other data structures, or simply leave it where it is and use it later.

MIDI
Scripts may use the sendMIDI function to send MIDI messages.

Page 14

They may also define a function to be called to receive MIDI. Since this could potentially cause a
large processing overhead, the interface to this is designed to allow messages to be filtered in the
native C code before calling into Lua.

To receive MIDI, add a midi member to the table returned from init:

, parameters =
{
, { "Edges", { "Bounce", "Warp" }, 1 }
, { "MIDI channel", 0, 16, 0 }
}

, midi = { channelParameter = 2, messages = { "note", "cc", "bend",
"aftertouch", "poly pressure", "program change" } }

The midi table has two members.

• channelParameter is the index in the parameters table of a parameter that allows the user
to choose the MIDI channel on which the script should listen. (‘0’ turns off MIDI
altogether.)

• messages is an array of MIDI message types that the script want to receive.

The system will then call a member function named midiMessage when a matching message is
received:

midiMessage = function(self, message)
if message[1] == 0x90 then

lastMessage = "None on " .. message[2] .. " vel " .. message[3]
elseif message[1] == 0x80 then

lastMessage = "None off " .. message[2] .. " vel " .. message[3]
end

end

Page 15

UI scripts

Introduction
Please refer to the disting NT user manual for information on installing and running UI scripts.

Anatomy of a UI script
There are three main sections that a script needs to implement:

● Initialisation. The module calls this section once when the script is loaded to allow it to
perform any required setup. This will typically include initialising any local state, and
identifying the algorithms and parameters that the script will control.

● Responding to UI events. The script can choose to respond to any or all button pushes,
encoders turns, pot turns etc.

● Drawing the UI. This can be as simple as showing the value of the parameter being
controlled, or completely freeform vector graphics and text.

With that in mind, here is a simple example:

local augustus
local p_multiplier

return
{

name = 'Example UI script'
, author = 'Expert Sleepers Ltd'
, description = 'controls one parameter of Augustus Loop'

, init = function()
augustus = findAlgorithm("Augustus Loop")
if augustus == nil then

return "Could not find 'Augustus Loop'"
end
p_multiplier = findParameter(augustus, "Delay multiplier")
if p_multiplier == nil then

return "Could not find 'Delay multiplier'"
end
return true

end

, pot3Turn = function(value)
setParameterNormalized(augustus, p_multiplier, value)

end

, button2Push = function()
exit()

end

, draw = function()
drawStandardParameterLine()
drawText(30, 40, "Hello!")

end
}

Page 16

The return value from the script is a table, most of the elements of which are functions to handle
various events. You can define some script-local variables before returning the table – here
augustus and p_multiplier are such variables.

The name, author, and description elements are optional but encouraged.

The init function is called once when the script is loaded. In this case, the script takes the
opportunity to search for and cache the indices of the algorithm and parameter that it would like to
control. This is purely in the interests of efficiency – it could search every time it wanted to change
the parameter. Or indeed, the script could just hard code the indices, but that would make it very
brittle and likely to break if any changes were made to the preset that the script is designed to work
with. The ‘init’ function returns true if everything is OK; if it doesn’t, the module will abandon the
script and revert to normal operation.

This example script watches for two UI events – turning pot 3, and pressing button 2. The latter
causes the script to exit and return to the normal module UI; the former sets a parameter on the
algorithm that was previously identified.

The final function draw is where the script gets to actually display something.
drawStandardParameterLine draws the most recently changed parameter across the top of the
screen, as in the default algorithm view.

All drawing must be performed from within draw. Calling any of the drawXXX functions from
elsewhere in the script will cause unexpected results.

Functions that a script can define

init
Called once when the script is loaded.

Takes no arguments.

Return Boolean true on success, else a string indicating the cause of failure.

pot1Turn/pot2Turn/pot3Turn
Called when the relevant pot is turned.

One argument: a number in the range [0.0,1.0].

Returns nothing.

encoder1Turn/encoder2Turn
Called when the relevant encoder is turned.

One argument: a number which is +1 for clockwise movement or -1 or anticlockwise movement.

Returns nothing.

Page 17

Button push/release functions
All take no arguments and return nothing. The following are defined:

button1Push, button2Push, button3Push, button4Push

button1Release, button2Release, button3Release, button4Release

pot1Push, pot2Push, pot3Push

pot1Release, pot2Release, pot3Release

encoder1Push, encoder2Push

encoder1Release, encoder2Release

draw
Called (continuously) to allow the UI to draw on the display.

Takes no arguments; returns nothing.

Page 18

The Lua console tool
The Lua console is a javascript program that runs in a web browser, communicating with the
module via MIDI SysEx.

It can be found in our GitHub repository here3.

It looks like this:

Interactive shell
The top section of the tool behaves somewhat like a standard bash etc. shell. You can enter
commands, which are run immediately on the module, and the results returned.

You can use this to interact with the global Lua instance, shared by all scripts. For example:

> for k,v in pairs(_G) do if string.sub(k,1,4) == 'draw' then print(k, v) end
end
drawSmoothBox function: 0x600415ad
drawRectangle function: 0x60041625
drawBox function: 0x6004151d
drawText function: 0x60094db5

3 https://github.com/expertsleepersltd/distingNT/tree/main/tools

Page 19

https://github.com/expertsleepersltd/distingNT/tree/main/tools

drawSmoothLine function: 0x600414a5
drawLine function: 0x60041415
drawParameterLine function: 0x60094e11
drawStandardParameterLine function: 0x60094e07
drawAlgorithmUI function: 0x60041275

This queries the Lua globals and finds all the draw functions.

Possible uses for this include accessing global variables that affect debug functions in your scripts.
It’s also handy to simply check Lua syntax when coding.

Keyboard shortcuts
Enter submits the command for execution.

Ctrl+L clears the window.

The up arrow recalls the previous command so it can be issued again.

Shift+Enter adds a carriage return without executing the command, so you can type multi-line
commands, for example:

> for i=1,4,1 do
print(i*i)
end
1
4
9
16

Installing programs
The lower section of the tool installs scripts into an instance of the Lua Script algorithm running on
the module. It is provided so you can iterate on a program without having to constantly update and
reload the version on the MicroSD card.

Note that it only updates the version loaded into the module’s memory. Once your changes have
been completed, you will need to copy the final version back to the card as usual.

At the time of writing the tool only updates the first Lua Script algorithm in the preset. It is
anticipated that at a later time you will be able to choose which algorithm to update.

To begin, copy the entire Lua script into the box, and click ‘Install Program’ to install it. Ctrl+Enter
is a keyboard shortcut to do the same thing.

Then make your edits, and install again to test.

The effect is as if you deleted the algorithm and reloaded it – the script starts with its init call etc.
No state is preserved (unless you’ve written it into a global Lua variable, which is not encouraged).

Page 20

Drawing in Lua scripts
Functions that perform drawing use pixels as their coordinate unit. The display is 256x64 pixels,
with the origin (0,0) at the top left.

The display supports 16 shades; functions that take a colour argument use values from 0 (pixel off)
to 15 (pixel fully lit).

Page 21

Language extensions
In addition to the base Lua language features, the following functions are implemented on the
disting NT.

Algorithm functions
• findAlgorithm
• getAlgorithmCount
• getAlgorithmName
• getCurrentAlgorithm

Parameter functions
• findParameter
• focusParameter
• getCurrentParameter
• getParameter
• getParameterCount
• getParameterName
• setParameter
• setParameterNormalized

UI functions
• standardPot1Turn/standardPot2Turn/standardPot3Turn

Drawing functions
• drawAlgorithmUI
• drawBox
• drawLine
• drawParameterLine
• drawRectangle
• drawSmoothLine
• drawStandardParameterLine
• drawText
• drawTinyText

Global functions
• exit
• getBusVoltage
• getCpuCycleCount
• getFirmwareVersion
• sendI2CCommand
• sendI2CGetter
• sendMIDI

Page 22

• setDisplayMode

Function documentation (alphabetical)

drawAlgorithmUI
drawAlgorithmUI(looper)

Draws the specified algorithm’s custom GUI.

Takes one argument: the algorithm index.

Returns nothing.

drawBox
drawBox(20, 40, 25, 45, 15)

Draws a box (an unfilled rectangle).

Takes five arguments: top left x/y, bottom right x/y, and colour. Coordinates are converted to integer
values before drawing.

Returns nothing.

drawCircle
drawCircle(30, 10, 20, 15)

Draws a circle.

Takes four arguments: centre x, centre y, radius, and colour. Coordinates are converted to integer
values before drawing.

Returns nothing.

drawLine
drawLine(30, 10, 100, 20, 15)

Draws a line.

Takes five arguments: top left x/y, bottom right x/y, and colour. Coordinates are converted to integer
values before drawing.

Returns nothing.

drawParameterLine
drawParameterLine(lfo, p_speeds[i], (i - 1) * 10)

Draws a line of information similar to that drawn by drawStandardParameterLine, but for a
specific algorithm and parameter.

Page 23

Takes three arguments: the algorithm index, the parameter index, and a y coordinate offset (from the
default position at the top of the screen).

Returns nothing.

drawRectangle
drawRectangle(21, 41, 24, 44, 1)

Draws a filled rectangle.

Takes five arguments: top left x/y, bottom right x/y, and colour. Coordinates are converted to integer
values before drawing.

Returns nothing.

drawSmoothCircle
drawSmoothCircle(30, 10, 20, 15)

Draws an antialiased circle.

Takes four arguments: centre x, centre y, radius, and colour, all of which can meaningfully be
floating point values.

Returns nothing.

drawSmoothLine
drawSmoothLine(100, 25.5, 30, 18.2, 8.3)

Draws an antialiased line.

Takes five arguments: top left x/y, bottom right x/y, and colour, all of which can meaningfully be
floating point values.

Returns nothing.

drawStandardParameterLine
drawStandardParameterLine()

Draws the standard algorithm parameter line at the top of the screen, as in the default algorithm
view, showing the most recently modified parameter.

No arguments; returns nothing.

drawText
drawText(30, 40, "Hello!", 8, "right")

Draws a string on the display in the module’s standard font.

Page 24

Takes three, four, or five arguments: the x and y coordinates, the string to draw, optionally a colour,
and optionally an alignment. The y coordinate specifies the text baseline. The colour is a value from
0-15; if not supplied, 15 is used. The alignment is a string, one of "centre" or "right"; if not
supplied, left alignment is used.

Returns nothing.

drawTinyText
drawTinyText(30, 40, "Hello!", 15, "centre")

Draws a string on the display in the module’s tiny 3x5 pixel font.

Takes three, four, or five arguments: the x and y coordinates, the string to draw, optionally a colour,
and optionally an alignment. The y coordinate specifies the text baseline. The colour is a value from
0-15; if not supplied, 15 is used. The alignment is a string, one of "centre" or "right"; if not
supplied, left alignment is used.

Returns nothing.

exit
exit()

When called from a UI script, returns control to the normal module UI.

No arguments; returns nothing.

findAlgorithm
augustus = findAlgorithm("Augustus Loop")

Allows the script to look up an algorithm within the preset.

Takes one argument, a string. Currently this is matched against the algorithms’ (customised) names.

Returns as many results as matches found. Each is a 1-based index into the list of algorithms.

findParameter
p_multiplier = findParameter(augustus, "Delay multiplier")

Allows the script to look up a parameter within an algorithm.

Takes two arguments: a number, the algorithm index; and a string, which is matched against the
parameter names.

Returns as many results as matches found. Each is a 1-based index into the list of parameters.

For algorithms with variable numbers of parameters (according to their specification), the string is
matched against the base parameter name and the prefixed parameter name as seen in, for example,
the preset editor tool. Say you have an LFO algorithm with two channels – the string ‘Speed’ will

Page 25

match against the parameter for all channels, so this function will return two results, but the string
‘1:Speed’ or ‘2:Speed’ will give you only the parameter for the specific channel.

focusParameter
focusParameter(augustus, p_multiplier)

Sets the current algorithm and parameter (the parameter that drawStandardParameterLine() will
show).

Takes two arguments: the algorithm index, and the parameter index.

Returns nothing.

getAlgorithmCount
local count = getAlgorithmCount()

Returns the number of algorithms in the preset.

getAlgorithmName
local name = getAlgorithmName(alg)

Takes one argument: the algorithm index.

Returns the name of that algorithm (as displayed on the overview screen).

getBusVoltage
local v = getBusVoltage(1, 12)

Gets the voltage on a bus at an algorithm’s input. (These are the same voltages that are displayed in
the algorithm overview display.)

Takes two arguments: the algorithm index, and the bus index (zero-based). The algorithm index
value ranges from zero to the number of algorithms, the last value effectively returning the bus
voltage at the last algorithm’s output.

Returns the voltage.

getCpuCycleCount
local count = getCpuCycleCount()

Returns the value of the CPU’s on-chip cycle counter. This can be used to estimate how long a
section of code takes to run. Being a 32 bit counter at 600MHz, it overflows every 7 seconds,
approximately.

Page 26

getCurrentAlgorithm
local alg = getCurrentAlgorithm()

Returns the index of the current algorithm (that is, the one that would be highlighted in the
algorithm overview screen).

getCurrentParameter
local p = getCurrentParameter(alg)

Takes one argument: the algorithm index.

Returns the index of the current parameter for that algorithm.

getFirmwareVersion
local a, b, c, d = getFirmwareVersion()

Returns four values: the major, minor, and point version numbers (as integers), and the full version
string.

getParameter
local v = getParameter(augustus, p_multiplier)

Gets an algorithm parameter’s value.

Takes two arguments: the algorithm index, and the parameter index.

Returns the value.

getParameterCount
local v = getParameterCount(alg)

Takes one argument: the algorithm index.

Returns the number of parameters that the algorithm has.

getParameterName
local name = getParameterName(alg, index)

Takes two arguments: the algorithm index, and a parameter index.

Returns the name of the indexed parameter within the algorithm.

Page 27

sendI2CCommand
sendI2CCommand(0x32, 0x46, 7, 0, 2)

sendI2CCommand(0x32, { 0x46, 7, 0, 2 })

Sends an I2C command. The arguments are the I2C address to send to, followed by the command &
data bytes. The command & data bytes may be included as simple parameters, or be contained in a
table.

Returns nothing.

sendI2CGetter
local data = sendI2CGetter(0x32, 2, 0x48, 7)

local data = sendI2CGetter(0x32, 2, { 0x48, 7 })

Sends an I2C getter. The arguments are the I2C address to send to, the number of bytes expected in
the response, followed by the command & data bytes. The command & data bytes may be included
as simple parameters, or be contained in a table.

Returns an array of bytes.

sendMIDI
sendMIDI(where, 0x90, 48, 127)

Sends a MIDI message.

The first argument is a bitmask of destinations, with the values

0x1 – MIDI breakout
0x2 – Select Bus
0x4 – USB
0x8 – Internal

Following this are one, two, or three arguments, which are the bytes of the MIDI message to send.

Returns nothing.

setDisplayMode
setDisplayMode("overview")

Sets the module’s display mode.

Takes one string argument, which specifies the new display mode. The options are "overview",
"meters", "parameters", "ui" (the custom UI for the current algorithm), "algorithm" (the current
algorithm’s parameters or UI depending on which was most recently used), and "menu".

Returns nothing.

Page 28

setParameter
setParameter(augustus, p_multiplier, value, focus)

Sets an algorithm parameter’s value.

Takes four arguments: the algorithm index, the parameter index, the parameter value, and whether
to focus the UI (the ‘current parameter’) on the changed parameter. focus is optional – if not
provided it is assumed true.

Returns nothing.

setParameterNormalized
setParameterNormalized(augustus, p_multiplier, value, focus)

The same as setParameter, except the third argument is a number in the range [0.0,1.0], which is
mapped onto the full range of the parameter being changed.

standardPot1Turn/standardPot2Turn/standardPot3Turn
standardPot1Turn(value)

Performs the standard function of the pot when in the algorithm view. Typically used as e.g.

, pot1Turn = function(value)
standardPot1Turn(value)

end

Page 29

Acknowledgments

Lua
Copyright © 1994–2024 Lua.org, PUC-Rio.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Page 30

	Introduction
	Lua version
	Libraries

	The Lua Script algorithm
	Introduction
	Anatomy of a script
	Name and description
	The script is a chunk
	The ‘self’ table
	The ‘init’ function
	The ‘step’ function
	Stepped and linear outputs
	Triggers and gates
	Input and output naming
	The ‘draw’ function
	Parameters
	self.algorithmIndex
	self.parameterOffset
	Custom UI
	Serialisation
	MIDI

	UI scripts
	Introduction
	Anatomy of a UI script
	Functions that a script can define
	init
	pot1Turn/pot2Turn/pot3Turn
	encoder1Turn/encoder2Turn
	Button push/release functions
	draw

	The Lua console tool
	Interactive shell
	Keyboard shortcuts

	Installing programs

	Drawing in Lua scripts
	Language extensions
	Algorithm functions
	Parameter functions
	UI functions
	Drawing functions
	Global functions
	Function documentation (alphabetical)
	drawAlgorithmUI
	drawBox
	drawCircle
	drawLine
	drawParameterLine
	drawRectangle
	drawSmoothCircle
	drawSmoothLine
	drawStandardParameterLine
	drawText
	drawTinyText
	exit
	findAlgorithm
	findParameter
	focusParameter
	getAlgorithmCount
	getAlgorithmName
	getBusVoltage
	getCpuCycleCount
	getCurrentAlgorithm
	getCurrentParameter
	getFirmwareVersion
	getParameter
	getParameterCount
	getParameterName
	sendI2CCommand
	sendI2CGetter
	sendMIDI
	setDisplayMode
	setParameter
	setParameterNormalized
	standardPot1Turn/standardPot2Turn/standardPot3Turn

	Acknowledgments
	Lua

