
Expert Sleepers
MIDI & OSC Scripting Manual
v1.1.0

Copyright © 2009 Expert Sleepers. All rights reserved.

This manual, as well as the software described in it, is furnished under licence and may be
used or copied only in accordance with the terms of such licence. The content of this man-
ual is furnished for informational use only, is subject to change without notice, and should
not be construed as a commitment by Expert Sleepers. Expert Sleepers assumes no respon-
sibility or liability for any errors or inaccuracies that may appear in this document.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EX-
PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGE-
MENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Contents
MIDI & OSC Lua scripting 5

Learn by example 5

Share your scripts! 5

Script locations 6
Mac OS X 6
Windows 6

Overriding the default script 6

MIDI & OSC Script Functions 6
getParameterID(param) 6
getParameter(param) 7
setParameter(param, value) 7
getParameterMinMax(param) 7
getParameterUnit(param) 7
getParameterName(param) 7
isParameterUsed(param) 7
getNumParameters() 7
setOthersParameter(id, param, value) 7
getOthersParameter(id, param) 8
sendOSC(address, path [, format] [, values]) 8
requestAllNoteOn(function) 8
requestAllNoteOff(function) 8
requestAllCC(function) 9
requestAllNRPN(function) 9
requestAllProgramChange(function) 9
requestAllPolyPressure(function) 9
requestNoteOn(note, function) 9
requestNoteOff(note, function) 9
requestCC(cc, function) 10
requestNRPN(nrpn, function) 10
requestProgramChange(pc, function) 10
requestPolyPressure(key, function) 10
requestPitchWheel(function) 10
requestChannelPressure(function) 11
time() 11
requestTimedCallback(interval, function) 11
requestPeriodicCallback(interval, function) 11
cancelTimer(timer) 11

setGUIBoolValue(id, value) 12
getGUIBoolValue(id) 12
setOthersGUIBoolValue(other, id, value) 12
getOthersGUIBoolValue(other, id) 12
registerOSCPathForParameter(path, param) 12
registerOSCPathForParameterNormalized(path, param) 12

Pre-defined Global Values 12

Debugging 13
Mac OS X 13
Windows 13

Version History 14

Contact 15

Acknowledgements 16
Lua 16

oscpack 16

MIDI & OSC Lua scripting
For most Expert Sleepers plug-ins it is possible to extend the plug-in’s MIDI & OSC func-
tionality via user-writeable scripts. Indeed, the plug-in’s standard MIDI functionality is
usually implemented using such a script, which you can use as reference for your cus-
tomisations. Refer to the user manual of the individual plug-ins for information on their
particular scripting implementation.

The language used for the MIDI scripts is Lua. You will find a complete description of the
language, and some useful tutorials, at the Lua website: www.lua.org

All the standard language features of Lua are available in the scripts, plus some extra func-
tions (documented below) specific to the Expert Sleepers system.

Learn by example
The best way to learn about scripting the MIDI & OSC functionality is to look at the exist-
ing examples, particularly the default script that ships with the plug-in. Just open up the
plug-in bundle and find the midi.lua file within. (Windows users should download the
Mac OS X version of the plug-in and get the script from there, since in the Windows ver-
sion the script is munged into the plug-in as a Windows resource.)

Most of the example snippets in the documentation below are taken directly from the de-
fault midi script.

You should be able to find more scripts on the Expert Sleepers website.

Share your scripts!
You are encouraged to share your scripts with other users. For example, you could post
them on the Expert Sleepers forum (linked from the website). Alternatively, email them to
us, and we’ll make the best of the bunch downloadable directly from the Expert Sleepers
site.

http://www.lua.org
http://www.lua.org

Script locations
The plug-in looks for MIDI & OSC scripts in standard locations. Scripts must have the file-
name extension “.lua”.

Mac OS X

The plug-in looks for scripts in

Library/Application Support/Expert Sleepers/<plug-in name>/Scripts

E.g.

Library/Application Support/Expert Sleepers/Oomingmak/Scripts

Windows

The plug-in looks for scripts in

C:\Documents and Settings\<username>\Application Data\Expert
Sleepers\<plug-in name>\Scripts

E.g.

C:\Documents and Settings\<username>\Application Data\Expert
Sleepers\Oomingmak\Scripts

Overriding the default script
Normally any scripts that the plug-in finds are run in addition to (and after) the default
script (‘midi.lua’) that comes with the plug-in itself.

However, if you name your own script ‘midi.lua’, then the default script is not run. This
lets you completely replace the plug-in’s default MIDI behaviour, rather than simply ex-
tend it.

MIDI & OSC Script Functions
The scripts are simply loaded and executed. You do not need to define any particular func-
tions for the system to call.

The following functions are available for you to call to define your script behaviour.

getParameterID(param)

Returns the parameter ID of the named parameter. Use with setParameter()/
getParameter() (see below). E.g.

paramID_Pitch = getParameterID("Pitch")

getParameter(param)

Returns the value of the plug-in parameter. ‘param’ can either be the parameter name or
the parameter ID (as returned from getParameterID()). Using the ID is more efficient.
Typically you would obtain the ID in the main script body (which is only executed once)
and then use it in a handler function (which can be called many times). E.g.

pitch = getParameter(“Pitch”)
pitch = getParameter(paramID_Pitch)

setParameter(param, value)

Sets the value of the plug-in parameter. See the description of getParameter() for the mean-
ing of ‘param’. E.g.

setParameter(“Pitch”, 12.0)
setParameter(paramID_Pitch, 12.0)

getParameterMinMax(param)

Returns the minimum and maximum values allowable for a plug-in parameter. See the de-
scription of getParameter() for the meaning of ‘param’. E.g.

local minv, maxv = getParameterMinMax(paramID_Pitch)

getParameterUnit(param)

Returns an integer value that indicates the unit of the parameter (e.g. Hz, db, seconds).
The unit is one of the values defined by Apple’s Audio Unit specification.

getParameterName(param)

Returns the name of the parameter. (This is the same name that appears at the top right of
the GUI when the mouse is over a parameter’s control.)

isParameterUsed(param)

Returns a boolean value indicating whether the given parameter number is used by the
plug-in. You should not attempt to set or get the value of an unused parameter.

getNumParameters()

Returns the total number of parameters that the plug-in defines. More strictly speaking -
returns one more than the largest parameter ID that the plug-in uses, since there may be
unused parameter IDs.

setOthersParameter(id, param, value)

As setParameter(), but sets the parameter on another instance of the plug-in, not necessar-
ily the one running the script. This allows you to control several instances of the plug-in
from a single script.

The ‘id’ is matched against the OSC Port Offset of the plug-ins. Any plug-in that matches
the id will have its parameter set.

Note that all the plug-ins must be loaded by the same host application. For controlling in-
stances of the plug-in loaded by other hosts, or running on other computers, use the
‘sendOSC’ command (below).

E.g.

setOthersParameter(2, paramID_Pitch, 12.0)

getOthersParameter(id, param)

As getParameter(), but gets the parameter from another instance of the plug-in. See
setOthersParameter() for a fuller explanation. E.g.

pitch = getOthersParameter(2, paramID_Pitch)

sendOSC(address, path [, format] [, values])

Sends an OSC message. ‘values’ is an optional array of data items to be sent with the mes-
sage. If ‘values’ is used, then ‘format’ is an optional string that indicates how the items in
the values array should be interpreted. This is required because Lua treats all numbers as
being of the same type, whereas OSC differentiates between integers and floating point
values. The number of characters in ‘format’ should be the same as the number of values.
Each character may be one of ‘i’ (integer), ‘f’ (float) or ‘s’ (string).

E.g.

sendOSC("osc.udp://localhost:7001", "/foo")
sendOSC("osc.udp://localhost:7001", "/foo", { 3, 5.2, "hello" })
sendOSC("osc.udp://localhost:7001", "/foo", "ifs", { 3, 5.2, "hello" })
Note that the second example sends two floats and a string; the third sends an integer, a
float and a string.

requestAllNoteOn(function)

Request that the given function be called in response to any MIDI note on event. E.g.

local function handleNoteOn(channel, noteNumber, velocity)
	 -- do stuff
end
requestAllNoteOn(handleNoteOn)

requestAllNoteOff(function)

Request that the given function be called in response to any MIDI note off event. E.g.

local function handleNoteOff(channel, noteNumber, velocity)
	 -- do stuff
end
requestAllNoteOff(handleNoteOff)

requestAllCC(function)

Request that the given function be called in response to any MIDI continuous controller
(CC) event. E.g.

local function handleCC(channel, cc, value)
	 -- do stuff
end
requestAllCC(handleCC)

requestAllNRPN(function)

Request that the given function be called in response to any MIDI non-registered parame-
ter number (NRPN) event. E.g.

local function handleNRPN(channel, nrpn, value)
	 -- do stuff
end
requestAllNRPN(handleNRPN)

requestAllProgramChange(function)

Request that the given function be called in response to any MIDI program change event.
E.g.

local function handlePC(channel, value)
	 -- do stuff
end
requestAllProgramChange(handlePC)

requestAllPolyPressure(function)

Request that the given function be called in response to any MIDI poly pressure (poly-
phonic aftertouch) event. E.g.

local function handlePolyPressure(channel, key, value)
	 -- do stuff
end
requestAllPolyPressure(handlePolyPressure)

requestNoteOn(note, function)

Request that the given function be called in response to a MIDI note on event matching the
given note number. E.g.

local function handleNoteOn(channel, noteNumber, velocity)
	 -- do stuff
end
requestNoteOn(60, handleNoteOn)

requestNoteOff(note, function)

Request that the given function be called in response to a MIDI note off event matching
the given note number. E.g.

local function handleNoteOff(channel, noteNumber, velocity)
	 -- do stuff
end
requestNoteOff(60, handleNoteOff)

requestCC(cc, function)

Request that the given function be called in response to the given MIDI continuous con-
troller (CC) event. E.g.

local function handleCC(channel, cc, value)
	 -- do stuff
end
requestCC(20, handleCC)

requestNRPN(nrpn, function)

Request that the given function be called in response to the given MIDI non-registered pa-
rameter number (NRPN) event. E.g.

local function handleNRPN(channel, nrpn, value)
	 -- do stuff
end
requestNRPN(1000, handleNRPN)

requestProgramChange(pc, function)

Request that the given function be called in response to the given MIDI program change
event. E.g.

local function handlePC(channel, value)
	 -- do stuff
end
requestProgramChange(2, handlePC)

requestPolyPressure(key, function)

Request that the given function be called in response to a MIDI poly pressure (polyphonic
aftertouch) event on the given key. E.g.

local function handlePolyPressure(channel, key, value)
	 -- do stuff
end
requestPolyPressure(60, handlePolyPressure)

requestPitchWheel(function)

Request that the given function be called in response to a MIDI pitch wheel event. NB the
value passed to the handler function is the raw 14 bit MIDI value, not e.g. a normalised
±1.0 value. E.g.

local function handlePitchWheel(channel, value)
	 -- do stuff
end
requestPitchWheel(handlePitchWheel)

requestChannelPressure(function)

Request that the given function be called in response to a MIDI channel pressure (after-
touch) event. E.g.

local function handleChannelPressure(channel, value)
	 -- do stuff
end
requestChannelPressure(handleChannelPressure)

time()

Returns a value in seconds. The value itself is not particularly meaningful, but if you call it
twice and subtract the two values you will have the time interval between the two calls.
E.g.

time1 = time()
	 -- do stuff
time2 = time()
print("elapsed time", time2-time1)

requestTimedCallback(interval, function)

Requests that the given function should be called after interval seconds. Returns a timer
object that can be passed to cancelTimer() (see below). E.g.

local function timerTimeOut()
	 print("it is now 2 seconds later")
end
requestTimedCallback(2.0, timerTimeOut)

requestPeriodicCallback(interval, function)

Requests that the given function should be called every interval seconds. Returns a timer
object that can be passed to cancelTimer() (see below). E.g.

local function timerCallback()
	 print("tick")
end
requestPeriodicCallback(1.0, timerCallback)

cancelTimer(timer)

Cancels a timer that was created with requestTimedCallback() or requestPeriodicCall-
back(). After this call the timer object is no longer valid and should not be used. E.g.

timer = requestPeriodicCallback(1.0, timerCallback)

	 -- timer is now firing every second

cancelTimer(timer)
timer = nil

setGUIBoolValue(id, value)

Sets a value that can be picked up by GUI objects. ‘id’ is a number between 0 and 7. ‘value’
is interpreted as a boolean value (true or false). See the GUI script method indicator() for a
typical usage.

getGUIBoolValue(id)

Gets one of the values that can be set with setGUIBoolValue(). ‘id’ is a number between 0
and 7.

setOthersGUIBoolValue(other, id, value)

As setGUIBoolValue() but sets the value on other instances of the plug-in - see
setOthersParameter() above.

getOthersGUIBoolValue(other, id)

As getGUIBoolValue() but gets the value from another instance of the plug-in - see
getOthersParameter() above.

registerOSCPathForParameter(path, param)

Registers the OSC path ‘path’ as controlling the parameter ‘param’ (which is a parameter
name or ID, as for e.g. setParameter()).

The OSC packet should include a float value after the path, which will be the value for the
parameter. E.g.

registerOSCPathForParameter("/1/fader1", "Env 1 Scale")

registerOSCPathForParameterNormalized(path, param)

As registerOSCPathForParameter() except that incoming OSC values in the range 0-1 are
renormalized to control the full parameter range between its minimum and maximum
values.

Pre-defined Global Values
The system defines some values before calling your script, which you can use to make the
script’s behaviour dependent on, for example, what kind of computer you’re using. These
values (which are pretty self-explanatory) are:

• isMac
• isWin
• isVST
• isAU
• majorVersion

• minorVersion
• dotVersion
• version

The plug-in’s version number is of the form x.y.z (e.g. 2.1.4) where x is the major version
number, y is the minor version number, and z is the dot version. The ‘version’ global vari-
able contains a single value combining all three e.g. for version 2.1.4, ‘version’ is 20104.
This is useful for making your scripts backwardly compatible - by testing for the version
number and not trying to use features that were not present in a version of the plug-in
older than the version you’re testing for.

Debugging
You can use Lua’s ‘print’ function to write out information to help you track what’s going
on (or what’s not going on) in your script. Also any run-time errors, or errors in loading
the script in the first place, are reported. In both cases, the output goes to:

Mac OS X

The system console.log. Use the standard Console utility (located in Applications/
Utilities) to view it.

Windows

The system OutputDebugString API. Use an application like Sysinternal’s DebugView to
view it.

Version History
1.1.0 27/7/2009

• Added registerOSCPathForParameter() and registerOSCPathForParameterNormal-
ized().

1.0.0 19/5/2009

• Initial version.

Contact
The Expert Sleepers website is here:

http://www.expert-sleepers.co.uk/

Or you can email

info@expertsleepers.co.uk

Or you can use the forum, which is here:
http://www.kvraudio.com/forum/viewforum.php?f=85

http://www.expert-sleepers.co.uk/
http://www.expert-sleepers.co.uk/
mailto:info@expertsleepers.co.uk
mailto:info@expertsleepers.co.uk
http://www.kvraudio.com/forum/viewforum.php?f=85
http://www.kvraudio.com/forum/viewforum.php?f=85

Acknowledgements
The software described in this manual makes use of the following open source projects.
The author is greatly indebted to them for their efforts and generosity.

Below are reproduced the various copyright notices and disclaimers that accompany these
software projects, in accordance with their terms of use.

Lua
Copyright (C) 1994-2008 Lua.org, PUC-Rio.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to per-
mit persons to whom the Software is furnished to do so, subject to the following con-
ditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABIL-
ITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CON-
NECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

oscpack
oscpack -- Open Sound Control packet manipulation library
http://www.audiomulch.com/~rossb/code/oscpack

Copyright (c) 2004 Ross Bencina <rossb@audiomulch.com>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documenta-
tion files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Soft-
ware.

Any person wishing to distribute modifications to the Software is requested to send the modifications to the original
developer so that they can be incorporated into the canonical version.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUD-
ING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHER-
WISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

http://www.audiomulch.com/~rossb/code/oscpack
http://www.audiomulch.com/~rossb/code/oscpack
mailto:rossb@audiomulch.com
mailto:rossb@audiomulch.com

